Description

Electronic circuit protector type ESX10 is designed to ensure selective disconnection of DC 24 V load systems.

DC 24 V power supplies, which are widely used in industry today, will shut down the output in the event of an overload with the result that one faulty load in the system can lead to complete disconnection of all loads. As well as an unidentified failure this also means stoppage of the whole system.

Through selective disconnection the ESX10 responds much faster to overload or short circuit conditions than the switch-mode power supply. This is achieved by active current limitation. The ESX10 limits the highest possible current to values between 1.3 to 1.8 times the selected rated current of the circuit protector. Thus it is possible to switch on capacitive loads of up to $\mathbf{7 5 , 0 0 0} \boldsymbol{\mu F}$ lamp loads, but they are disconnected only in the event of an overload or short circuit.

For optimal alignment with the characteristics of the application the current rating of the ESX10 can be selected in fixed values from 0.5 A... 12 A . Failure and status indication are provided by a multicolour LED and an integral short-circuit-proof status output or a potential-free signal contact.

The ESX10, with a width of only 12.5 mm , can be plugged into the E-T-A power distribution socket Module 17plus ensuring ease of installation and saving space in control cabinets.

Upon detection of overload or short circuit in the load circuit, the MOSFET of the load output will be blocked to interrupt the current flow. The MOSFET and the load circuit may be re-activated via the remote electronic reset input or manually by means of the ON/OFF button. When starting up the system, the load circuit may also be manually disconnected.

US patent number: US 6,490,141 B2

Features

- Selective load protection, electronic trip characteristics.
- Active current limitation for safe connection of capacitive loads up to $75,000 \mu \mathrm{~F}$ and on overload/short circuit.
- Current ratings 0.5 A... 12 A .
- Reliable overload disconnection with $1.1 \times \mathrm{I}_{\mathrm{N}}$ plus, even with long load lines or small cable cross sections (see table 3).
- Manual ON/OFF button (S1).
- Clear status and failure indication through LED, status output SF or Si contact F.
- Electronic reset input RE (option).
- Integral fail-safe element.
- Width per unit only 12.5 mm .
- Plug-in mounting utilising power distribution system Module 17plus or SVSxx optionally (see product group Power distribution systems)
- Additional versions with ATEX approval available.

Marking: © $\underbrace{}_{x}$ II 3G Ex nA IIB T4 Gc X
ESX10-...-E
Please observe separate operating instructions:

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Operating data

Operating voltage U_{S}	DC 24 V (18... 32 V)
Current rating I_{N}	fixed current ratings: $0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$, $4 \mathrm{~A}, 6 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}, 12 \mathrm{~A}$
Closed current I_{0}	ON condition: typically 20... 30 mA depending on signal output
Status indication by means of	- multicolour LED: GREEN: unit is ON, power-MOSFET is switched on - status output SF ON, supplies +DC 24 V ORANGE: in the event of overload or short circuit until electronic disconnection RED: - unit electronically disconnected - load circuit/Power-MOSFET OFF OFF: - manually switched off (S1 = OFF) or device is dead - undervoltage ($\mathrm{U}_{\mathrm{S}}<8 \mathrm{~V}$) - after switch-on till the end of the delay period - status output SF (option) - potential-free signal contact F (option) - ON/OFF/ condition of switch S1
Load circuit	
Load output	Power-MOSFET switching output (high side switch)
Overload disconnection	typically $1.1 \times \mathrm{I}_{\mathrm{N}}\left(1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}\right)$
Short-circuit current I_{K}	active current limitation (see table 1)
Trip time for electronic disconnection	see time/current characteristics typically 3 s at $\mathrm{I}_{\text {Load }}>1.1 \times \mathrm{I}_{\mathrm{N}}$ typically $3 \mathrm{~s} . .100 \mathrm{~ms}$ at $\mathrm{I}_{\text {Load }}>1.8 \times \mathrm{I}_{\mathrm{N}}$ (or $1.5 \times \mathrm{I}_{\mathrm{N}} / 1.3 \times \mathrm{I}_{\mathrm{N}}$)
Temperature disconnection	internal temperature monitoring with electronic disconnection
Low voltage monitoring load output	with hysteresis, no reset necessary load "OFF" at $\mathrm{U}_{\mathrm{S}}<8 \mathrm{~V}$
Starting delay $\mathrm{t}_{\text {start }}$	typically 0.5 sec after every switch-on and after applying U_{S}
Disconnection of load circuit electronic disconnection	
Free-wheeling circuit	external free-wheeling diode recommended with inductive load
Several load outputs must n	t be connected in parallel

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Status output SF

Electrical data	plus-switching signal output, connects U_{S} to terminal 12 of module 17plus nominal data: DC $24 \mathrm{~V} /$ max. 0.2 A (short circuit proof) status output is internally connected to GND with a 10 kOhm resistor
Status OUT	ESX10-104/-106/-124 (signal status OUT), at $U_{S}=+24 \mathrm{~V}$ $+24 \mathrm{~V}=\mathrm{S} 1$ is ON , load output connected through $\mathrm{OV}=\mathrm{S} 1$ is ON , load output blocked and/or switch S1 is OFF
Status OUT	ESX10-127 (signal status OUT inverted), at $U_{S}=+24 \mathrm{~V}$ $+24 \mathrm{~V}=\mathrm{S} 1$ is ON , load output blocked, red LED lighted $\mathrm{OV}=\mathrm{S} 1$ is ON , load output connected through and/or switch S1 is in OFF position
OFF condition	0 V level at status output when: switch S1 is in ON position, but device is still in switch-on delay switch S1 is OFF, or control signal OFF, device is switched off no operating voltage U_{S}
Signal output F	ESX10-103/-115/-125
Electrical data	potential-free signal contact max. DC $30 \mathrm{~V} / 0.5 \mathrm{~A}$, min. $10 \mathrm{~V} / 10 \mathrm{~mA}$
ON condition LED green	voltage U_{S} applied, switch $S 1$ is in ON position no overload, no short circuit
OFF condition LED off	- device switched off (switch S1 is in OFF position) no voltage U_{S} applied
Fault condition LED orange	overload condition $>1.1 \times I_{N}$ up to electronic disconnection
Fault condition LED red	electronic disconnection upon overload or short circuit
	device switched off with control signal (switch S1 is in ON position)
ESX10-101	single signal, make contact contact SC/SO-SI open
ESX10-102	single signal, break contact contact SC/SO-SI closed
ESX10-103	group signal change-over contact contact SC-SO open, SC-SI closed
ESX10-115/-125	group signal, make contact contact SC-SO open
Fault	signal output fault conditions: no operating voltage U_{S} - ON/OFF switch S1 is in OFF position - red LED lighted (electronic disconnection)

Table 1: voltage drop, current limitation, max. load current

current rating I_{N}	typically voltage drop $U_{O N}$ at I_{N}	active current limitation (typically)	max. load current at 100 \% ON duty	
			$\mathrm{T}_{U}=40^{\circ} \mathrm{C}$	$\mathrm{T}_{U}=50^{\circ} \mathrm{C}$
0.5 A	70 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	0.5 A	0.5 A
1 A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	1 A	1 A
2 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	2 A	2 A
3 A	80 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	3 A	3 A
4 A	100 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
6 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
8 A	120 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	8 A	7 A
10 A	150 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A
12 A	180 mV	$1.3 \times \mathrm{I}_{\mathrm{N}}$	12 A	10.8 A

Attention: when mounted side-by-side without convection the ESX10-0.. should not carry more than 80% of its rated load with 100% ON duty due to thermal effects.

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Reset input RE
Electrical data

Reset signal RE (= terminal 13,14 or 12 of Module 17plus)

Caution: unused slots have to be fitted with jumpers

	The reset simultaneously affects all blocked ESX10-124/-127 channels of the power distribution system, all switched on
	ESX10-124/-127 channels remain unaffected. With type ESX10-125 the reset only affects the device concerned. By connecting the individual terminals 12 of the Module 17plus a joint reset signal for all ESX10-125 may be generated.
ESX10-115	

Ordering configuration for ATEX versions: ...-E

Type No.

ESX10 Electronic Circuit Protector for DC 24 V applications
Version
1 standard, without physical isolation in the event of a failure
Signal input
0 without signal input
1 with control input IN+
2 with reset input RE
Signal outputs
0 without
3 signal output F (group signal, change-over)
4 status output SF
5 signal output F (group signal, N/O
only ESX10-115 and ESX10-125)
Operating voltage
DC 24 V rated voltage DC 24 V
Current rating
0.5... 12 A

Approvals
ATEX

ESX10-1 0 3-DC 24V-6A E ordering example

Ordering information

Type No.

ESX10 Electronic Circuit Protector for DC 24 V applications
Version
1 standard, without physical isolation in the event of a failure
Signal input
0 without signal input
1 with control input IN+, only ESX10-115
2 with reset input RE, only ESX10-124
Signal outputs
0 without, only ESX10-100
3 signal output F (group signal, change-over) only ESX10-103
4 status output SF (+24 V = OK), only ESX10-104, ESX10-124
5 signal output F (group signal, N/O
only ESX10-115 and ESX10-125)
Operating voltage
DC 24 V rated voltage DC 24 V
Current rating
0.5 A

1 A
2 A
3 A
4 A
8 A
10 A
12 A
ESX10-1 0 3- DC 24 V-6 A ordering example
Description of ESX10 signal inputs and outputs (wiring diagrams) see next page.

Preferred types

Preferred types	Standard current ratings (A)							
	1	2	3	4	6	8	10	12
ESX10-103-DC24V	x	x	x	x	x	x	x	x

Please note:

- The user should ensure that the cable cross sections of the relvant load circuit are suitable for the current rating of the ESX10 used.
- Automatic start-up of machinery after shut down must be prevented (Machinery Directive 98/37/EG and EN 60204-1). In the event of a short circuit or overload the load circuit will be disconnected electronically by the ESX10.

Approvals

Authority	Standard	Voltage ratings	Current ratings
UL	UL 2367	DC 24 V	$0.5 \ldots 12 \mathrm{~A}$
UL	UL 1604	DC 24 V	$0.5 \ldots 12 \mathrm{~A}$
UL cURus	UL 508 CSA C22.2 No. 14	DC 24 V	$0.5 \ldots 16 \mathrm{~A}$
CSA	C22.2 No. 142 C22.2 No. 213 (class I, division 2)	DC 24 V	$0.5 \ldots 12 \mathrm{~A}$
TÜV Süd	ATEX 94/9/EC Annex VIII EN 60079-0 EN 60079-11 EN 60079-15	DC 24 V	
GL	Rules VI, part 7, GL 2012, category C, EMC1	DC 24 V	$0.5 \ldots 12 \mathrm{~A}$

Schematic diagram ESX10-124

ESX10-124-...

LINE (+)
DC 24 V

Terminal wiring diagram ESX10-124

ESX10

Dimensions

This is a metric design and millimeter dimensions take precedence $\left(\frac{\mathrm{mm}}{\mathrm{inch}}\right)$

Information to UL-Approvals/CSA-Approvals

T
ESX10
UL1604
UL File \# E320024
Operating Temperature Code $\mathrm{T} 4 \mathrm{~A} / 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

- This equipment is suitable for use in Class I, Division 2,

Groups A, B, C and D or non-hazardous locations only
WARNING:

- Exposure to some chemicals may degrade the sealing properties of materials used in the following device: relay
Sealant Material:
Generic Name: Modified diglycidyl ether of bisphenol A Supplier: Fine Polymers Corporation Type: Epi Fine 4616L-160PK
Casing Material:
Generic Name: Liquid Crystal Polymer
Supplier: Sumitomo Chemical Type: E4008, E4009, or E6008

RECOMMENDATION:

- Periodically inspect the device named above for any degradation of properties and replace if degradation is found

WARNING - EXPLOSION HAZARD:

- Do not disconnect equipment unless power has been removed or the area is known to be non-hazardous
- Substitution of any components may impair suitability for Class I, Division 2

ESX10
UL2367
Non-hazardous use - UL File \# E306740
${ }_{c} \mathrm{~N}_{\text {us }}$
ESX10
UL 508, CSA C22.2 No. 14
Non-hazardous use - UL File \# E322549
ESX10
CSA C22.2 No. 142 - File \# 16186
CSA C22.2 No. 213 (Class I, Division 2) - File \# 16186
Class 2
Meets requirement for Class 2 current limitation
(ESX10-...-0.5 A/1 A/2 A/3 A)

EDT「A゚

Electronic Circuit Protector

9

UL1604
UL File \# E320024
©

$$
\text { C22.2 No. } 213
$$

This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or non-hazardous locations only. T4A/ $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

Warnings:

1. Remove power before disconnecting device
or the area is known to be nonhazardous.
2. Components substitutions may impair suitability of Class I, Div 2
3. Chemical exposure may degrade internal relay's sealing property

TV

 UL2367Non-hazardous use
UL File \# E306740

- ${ }^{\circ}$ UL UL508

Us CSA C22.2 No. 14
Non-hazardous use
UL File \# E322549
Refer to data sheet / installation guidelines for installation and safety instructions.

EG-declaration of Conformity for ATEX-version ESX10-TA/-TB-...-E

E- [-A

E-T-A Elektrotechnische Apparate GmbH

	EU-Konformitätserklärung Nr. 100.218.1018-03 Declaration of Conformity
	Wir E-T-A Elektrotechnische Apparate GmbH We Industriestraße 2-8, D-90518 Altdorf, Germany
	(Name und Anschrit des Anbieters/ supplier's name and address)
	erklären in alleiniger Verantwortung, dass das Produkt declare under our sole responsibility that the procuct
	Elektronischer Sicherungsautomat Solid state overcurrent protector
	ESX10-TA (Hutschienenmontage $24 \mathrm{Vdc} /$ rail mounting 24Vdc)
	ESX10-TB (Hutschienenmontage $24 \mathrm{Vdc} /$ rail mounting 24Vdc)
	ES $\times 10-\ldots \quad \begin{aligned} & \text { (Steckmontage, mit Modul } 17 \mathrm{PLUS}, 24 \mathrm{Vdc} / \text { plug-in mounting with } \\ & \text { module } 17 \mathrm{P} \text { LUS, } 24 \mathrm{Vdc} \text {) }\end{aligned}$
	ESX10-TC (Hutschienenmontage 12Vdc / rail mounting 12Vdc)
	(Bezeichnung, Typ/Modell, evtl. Spezifikation/ name, type/model, optionally specification)
	auf das sich diese Erklärung bezieht, mit den wesentlichen Anforderungen folgender Richtlinie(\mathbf{n}) übereinstimmt: to which this declaration relates, is in conformity with the essential requirements of following Directive(s)
This Declaration of Conformity is following the basic requirements of the standard EN ISO/IEC 17050-1:2010 Conformity assessment Supplier's declaration of conformity - Part 1: General requirements.	2014/34/EU ATEX-Richtlinie / ATEX Directive
	Zur Beurteilung der Übereinstimmung wurde(n) folgende Norm(en) oder normativen Dokumente herangezogen: For evaluation of the conformity following standard(s) or normative document(s) were consulted:
	DIN EN 60079-0:2014-06 Explosionsgefährdete Bereiche - Teil 0: Betriebsmittel - Allgemeine Anforderungen Exolosive atmospheres - Part 0: Equipment - General requirements
	EN 60079-15: 2010 - Explosive Atmosphäre - Geräteschutz durch Zündschulzart „n" Explosive atmospheres - Equipment protection by type of protection " n "
	(Titel und/oder Nr . sowie Ausgabedatum der $\mathrm{Norm}(\mathrm{en})$ oder der anderen normati- ven Dokumente / Titte and /or number and date of issue of the standard(s) or other _ normative document(s)

[^0]6 E-
E-T-A Elektrotechnische Apparate GmbH

	EU-Konformitätserklärung Nr . 100.218.1018-03 Declaration of Conformity Zusätzliche Angaben: Additional information: \\| 3G ExnA llB T4 Gcx $-20^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+60^{\circ} \mathrm{C}$ (für $/$ for $\mathrm{ESX} 10-\mathrm{TC}$) $0^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+50^{\circ} \mathrm{C}$ (für/for ESX10, ESX10-TA, ESX10-TB) Besondere Bedingungen: Special conditions: Die zugehörige Betriebsanleitung enthält wichtige sicherheitstechnische Hinweise und Vorschriften für die Inbetriebnahme der genannten Geräte gemäß der Richtlinie 2014/34/EU (ATEX) The pertinent user manual is including important safety-related information and regulations for placing into operation of the described devices in accordance with Directive 2014/34/EU (ATEX). Werden die Produkte in eine übergeordnete Maschine/Anlage eingebaut, so müssen die durch den Einbau entstehenden neuen Risiken durch den Hersteller der neuen Maschine/Anlage beurteilt werden. In case the products will be fifted into a higher-level machine or system, the manufacturer of the new machine or system needs to assess possible new risks resulting from this action.
Altdorf, 28. Jun 2016	
(Ort und Datum der Ausstellung / Place and date of issue	(Name, Funktion, Unterschrift des/der Befugten I e) name, function, signature of authorized person(s))

Accessories

Module 17plus
For technical data see section Power Distribution Systems

E E. TAA゚ Electronic Circuit Protector ESX10

Time/Current characteristic curve ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Table 3: Reliable trip of ESX10

Reliable trip of ESX10 with different cable lengths and cross sections							
Resistivity of copper $\rho_{0}=0.0178\left(0 \mathrm{hm} \times \mathrm{mm}^{2}\right) / \mathrm{m}$							
$\mathbf{U}_{\text {S }}=\mathbf{D C} 19.2 \mathrm{~V}$ ($=80 \% \mathrm{v} .24 \mathrm{~V}$)	voltage drop of ESX10 and tolerance of trip point (typically $1.1 \times \mathrm{I}_{\mathrm{N}}=1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}$) have been taken into account.						
ESX10-selected rating $\mathrm{I}_{\mathrm{N}}($ in A$) \rightarrow$ e. g. trip current $\mathrm{I}_{\mathrm{ab}}=1.25 \times \mathrm{I}_{\mathrm{N}}($ (in A) \rightarrow $\mathrm{R}_{\text {max }}$ in $\mathrm{Ohm}=\left(\mathrm{U}_{\mathrm{S}} / \mathrm{I}_{\mathrm{ab}}\right)-\mathbf{0 . 0 5 0} \rightarrow$	3	6					
	3.75	7.5	\rightarrow ES	rips aft			
	5.07	2.51					
The ESX10 reliably trips from 0 Ohm to max. circuitry resistance $\mathbf{R}_{\text {max }}$							
Cable cross section \mathbf{A} in $\mathrm{mm}^{2} \rightarrow$	0.14	0.25	0.34	0.5	0.75	1	1.5
cable length \mathbf{L} in meter (= single length)	cable resistance in Ohm = ($\left.\mathbf{R}_{0} \times 2 \times \mathrm{L}\right) / \mathrm{A}$						
5	1.27	0.71	0.52	0.36	0.24	0.18	0.12
10	2.54	1.42	1.05	0.71	0.47	0.36	0.24
15	3.81	2.14	1.57	1.07	0.71	0.53	0.36
20	5.09	2.85	2.09	1.42	0.95	0.71	0.47
25	6.36	3.56	2.62	1.78	1.19	0.89	0.59
30	7.63	4.27	3.14	2.14	1.42	1.07	0.71
35	8.90	4.98	3.66	2.49	1.66	1.25	0.83
40	10.17	5.70	4.19	2.85	1.90	1.42	0.95
45	11.44	6.41	4.71	3.20	2.14	1.60	1.07
50	12.71	7.12	5.24	3.56	2.37	1.78	1.19
75	19.07	10.68	7.85	5.34	3.56	2.67	1.78
100	25.34	14.24	10.47	7.12	4.75	3.56	2.37
125	31.79	17.80	13.09	8.90	5.93	4.45	2.97
150	38.14	21.36	15.71	10.68	7.12	5.34	3.56
175	44.50	24.92	18.32	12.46	8.31	6.23	4.15
200	50.86	28.48	20.94	14.24	9.49	7.12	4.75
225	57.21	32.04	23.56	16.02	10.68	8.01	5.34
250	63.57	35.60	26.18	17.80	11.87	8.90	5.93
Example 1:	max. length at $1.5 \mathrm{~mm}^{2}$ and $3 \mathrm{~A} \rightarrow 214 \mathrm{~m}$						
Example 2:	max. length at $1.5 \mathrm{~mm}^{2}$ and $6 \mathrm{~A} \boldsymbol{\rightarrow} \mathbf{1 0 6 ~ m}$						
Example 3:	mixed wiring: $\mathrm{R} 1=40 \mathrm{~m}$ in $1.5 \mathrm{~mm}^{2}$ and $\mathrm{R} 2=5 \mathrm{~m}$ in $0.25 \mathrm{~mm}^{2}$: (Control cabinet - sensor/actuator level) R1 = 0.95 Ohm, R2 $=0.71$ Ohm Total (R1 + R2) = 1.66 Ohm						

E-TAA Electronic Circuit Protector ESX10

Table 2: ESX10 - product version

version	signal input		signal output		
			signal output F		status output SF
ESX10-...	control input ON/OFF +24 V Control IN+	reset input +24 V RE	group signal N/O	group signal change-over	$\begin{aligned} & \text { status OUT } \\ & +24 \mathrm{~V}=\mathrm{OK} \end{aligned}$
-100					
-103				x	
-104					x
-115	x		x		
-124		x			x
-125		x	x		

ESX10 Signal inputs / outputs (wiring diagram)

ESX10 signal inputs / outputs (wiring diagrams)

Signal contacts are shown in the OFF or fault condition.

ESX10-100

without signal input/output

ESX10-115-...
with control input IN+ (+DC 24 V with signal output F (group signal, N/O)

operating condition: SC-SO closed
fault condition: SC-SO open

ESX10-103
without signal input
with signal output F (group signal, change-over)

operating condition: SC/SO closed, SC-SI open fault condition: SC/SO open, SC-SI closed

ESX10-124-..
with reset input RE (+DC $24 \mathrm{~V} \downarrow$)
with status output SF (+24V = load output ON)

operating condition: $\mathrm{SF}+24 \mathrm{~V}=\mathrm{OK}$ fault condition: SF OV

ESX10-104
without signal input
with status output SF (+24 V = load output ON)

operating condition: $\mathrm{SF}+24 \mathrm{~V}=\mathrm{OK}$ fault condition: SF OV

ESX10-125-...
with reset input RE (+DC $24 \mathrm{~V} \downarrow$) with signal output F (group signal, N / O)

operating condition: SC-SO closed fault condition: SC-SO open

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)
All dimensions without tolerances are for reference only. In the interest of improved design performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

[^0]: D-90518 Alldorf/bei Nürnberg • Germany \bullet Teiephone $+499187 / 10-0 \bullet$ Facsimile $+499187 / 10-398$

